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PROPOSED SUPERSONIC LOW-DISTURBANCE TUNNEL

A schematic diagram of the new proposed Supersonic Low-Disturbance Tunnel at NASA

Langley is shown in figure 1. Existing high pressure air and vacuum systems will be

used. The specifications and design of two high quality air filters for the new

facility are based on experiences and data in the pilot tunnel (ref. 1). Aerodynamic

analysis and engineering details of the 8-ft diameter settling chamber and other

tunnel components are given in reference 2. The tunnel is designed to accommodate

nozzles of various lengths with Mach numbers ranging from 2 to 6. The first nozzle to

be operated in the tunnel will be the Mach 3.5 rapid expansion, two-dimensional nozzle

illustrated in the lower part of figure 1. The two-stroke model injector is required

to place the model into the quiet test core in the upstream part of the uniform flow

test rhombus. A 1/3-scale version of this nozzle has been developed and tested

extensively in the Pilot Low-Disturbance Tunnel at NASA Langley (refs. 1-4). The

techniques for obtaining laminar boundary layers on the nozzle walls, which is the key

requirement for quiet test section flow, will be presented in the next several

figures.
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QUIET TEST CORE IN M = 3.5 RAPID EXPANSION NOZZLE

The dominant source of test-section disturbances in conventional supersonic/

hypersonic tunnels is the acoustic radiation from eddies in the turbulent boundary
layers on the nozzle walls. In supersonic flow, this noise is in the form of finite-

strength wavelets which are propagated along Mach lines. Hence, as illustrated in

figure 2, the location of transition onset in the wall boundary layers is sensed with

a hot-wire probe at any point along a Mach line extended downstream from that location

which is then the "acoustic origin" for the onset of radiated noise in the nozzle flow

field. As the unit Reynolds number is increased, transition moves upstream along the

contoured walls in this nozzle. The quiet test core region then becomes smaller and

tends to approach some minimum size of streamwise length AX and height AY. When the
nozzle walls are very clean and highly polished, the minimum value of AX is about

4.5-inches (refs. 1 and 2). At high Reynolds numbers, the sidewall boundary layers
are generally turbulent. For these conditions, radiation from the side walls is

minimized by the large width of the nozzle (see lower part of fig. 2) and the small

local Mach numbers (M^ < 2.5) at the acoustic origin locatiDns The large width of

the quiet test core, AZ, allows the testing of swept wings and models at large angle
of attack.

/
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Figure 2
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TRANSITION REYNOLDS NUMBERS ON SHARP CONES

Local Reynolds numbers at transition onset, ReT, determined from recovery
temperatures measured on a sharp tip 5° half-angle cone in the pilot tunnel are

plotted against local unit Reynolds number, Re, in figure 3 (see refs. 3 and 4). For
values of Re/in < 8 x 10_, these data are in the range of atmospheric flight data

which are much higher than conventional wind-tunnel data due to the high-stream noise

levels in these latter tunnels (sources of these flight and conventional wind-tunnel

data are given in ref. 3). The cone used in the quiet tunnel tests was 15-inches long,
and for these lower values of Re/in, transition usually occurred on the cone well

downstream of the acoustic origin boundary of the quiet test core. Analysis and
correlation of these results (refs. 3 and 5) indicate that the cone boundary layer is

much more sensitive to wind-tunnel noise in the vicinity of the neutral stability
point than further downstream. For Re/in > 8 x 10v, the transition Reynolds numbers

decrease more or less rapidly towards the levels for previous conventional wind-tunnel

data depending on the nozzle wall finish. The effect of surface finish on wall

transition and quiet test core sizes in the pilot nozzle and the corresponding

quantitative requirements on the wall finish will be considered next.
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EFFECT OF TRANSITION ON QUIET TEST CORE LENGTH

Figure 4 shows how the axial distance from the throat to transition on the nozzle

wall, XT, is related to the length of the quiet test core, ,IX. Values of these

parameters and corresponding free-stream Reynolds numbers based on AX are given in

the table for large values of R/in > 9 x 10_ and for different surface finish

conditions. The original blocks were made of 17-4 PH stainless steel with a nominal

surface finish of 4 to 6 rms u-inches. After more polish work was completed the

finish was improved to about 1 rms u-inch and the values of AX then approached the

"minimum" values observed for this very good surface finish with the corresponding

much larger values of R AX . As part of an attempt to im])rove this finish a new set
of blocks was machined Trom 15-5 PH vacuum remelt stainless steel. The before-polish

data on these blocks indicates that AX was very s_all or zero. After preliminary
was Incr.ased by a factor of aboutpolish work, the value of AX for R /in _ 10 x 10_ " ,:

7 times. However, at R/in = 12.5_x 10b there was still no usable quiet test

core. To understand the reasons for these poor results, we will consider next the

effects of known roughness magnitudes and characteristics on nozzle-wall transition.

Mach 3.5 two-dimensional pilot nozzle
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Fi gure 4
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EFFECT OF SURFACE DAMAGE ON TRANSITION ASYMMETRY

, The surface finish of the new Mach 3.5 two-dimensional nozzle blocks has been
monitored throughout the polish work with scanning micro-video-recording equipment
developed by Dr. L. M. Weinstein at NASA Langley. The effects of any observed sur-
face defects on nozzle-wall boundary-layer transition can then be determined from
hot-wire surveys of free-stream disturbances. Results of such surveys obtained
after the preliminary polish work (fig. 4) are shown in figure 5. These surveys
were made in the vertical centerplane of the nozzle along the centerline (Y = O) and
I/2-inch above the centerline (Y = I/2-inch) as illustrated in the upper part of the
figure. In the lower part of the figure, values of the rms pressure normalized by
the mean static pressure, P/P, (the "noise level") from the hot-wire data are
plotted against the axial distance from the throat for three unit Reynolds numbers.
The criterion used to locate transition is where the noise levels rise above low

"laminar" values to P/P = 0. i percent. In the upper part of the figure, the asym-

metrical locations of transition on the to_ (No. 1) and bottom (No. 2) blocks are
shown for the surveys at Roo/in : 3.7 x 10 . The arrow indicates where transition
would have been detected at Y = I/2-inch for symmetrical locations on the two
blocks. The three arrows in the lower part of the figure indicate where transition
would be for the surveys at Y = 1/2-inch if XT was the same on both blocks for the
three unit Reynolds numbers. At the highest unit Reynolds number of 9.6 x 105/in,
transition asymmetry is more pronounced and (XT)y= 0 = 6.2-inches which corresponds

to XT = 1.l-inch on the wall of block No. 2. This location of transition is well
upstream of its location at the slightly smaller value of RJin = 9.3 x 105 in
figure 4 where XT = 2.9-inches. This rapid forward movement of transition with
increasing unit Reynolds number and the consistently larger values of XT on block
No. i than block No. 2, as well as the complete loss of laminar flow at

RJin = 12.5 x 105 (fig. 4) are caused by different surface defects on the two
blocks as shown in the next two figures.

NEWMACH 3.5 2-D PILOT NOZZLE
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POLISH RESULTS ON NEW MACH 3.5 TWO-DIMENSIONAL NOZZLE 
BLOCK NO. 1 

Figure 6 shows four microphotographs which i l l u s t r a t e  the gradually improved 
surface finish as the diamond polish grit  i s  reduced i n  s ize  from 15 microns down t o  
1/4-micron. 
= 5.1-inches from the sidewall on block No. 1 i s  shown. Most of these pits a re  
probably caused by micro-inclusions ( a i r  bubb les )  i n  the metal. The larger  pi ts  i n  
the photographs are .002 t o  .004-inch long w i t h  depths up t o  about 120 u -  inches 
measured w i t h  a micro-deflection transducer attached t o  the scanning video 
microscope. A large amount of data obtained w i t h  a commercial profilometer on these 
blocks indicates t ha t  some of the smaller pits are  only 20 t o  30 microinches deep and 
t h a t  the number and s ize  of the pits decreases as  the throat  region i s  approached. 

A typical pattern of p i ts  located a t  X = .7-inch from the throat  and a t  Z 

Figure 6 
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DAMAGE TO SURFACE FINISH FROM POLISH CONTAMINANTS 

F igu re  7 shows two microphotographs and cor respond ing  p r o f i l o m e t e r  t r a c e s  o f  
t y p i c a l  contaminant scratches which were v i s i b l e  t o  t h e  naked eye and were observed 
o n l y  on b lock  No. 2. These scratches, as w e l l  as many p i t s  ( f i g .  61, were p r e s e n t  
d u r i n g  t h e  t e s t  runs used f o r  f i g u r e s  4 and 5. The scratches shown i n  f i g u r e  7 a r e  
o n l y  30 t o  35 micro- inches deep a t  t he  l o c a t i o n  o f  t h e  p r o f i l o m e t e r  s t y l u s  t r a c k s .  
However, they are c l o s e  t o  the  t h r o a t  and a re  a l i g n e d  across the  f l o w  d i r e c t i o n .  
l am ina r  boundary- layer th icknesses f o r  R 
= .1 and .3- inch were on ly  .002 and .003-Tnch, r e s p e c t i v e l y ) .  
r e s u l t s  and the t r a n s i t i o n  asymmetry shown on f i g u r e  5 where XT was c o n s i s t e n t l y  
sma l le r  on b lock No. 2 than b lock No. 1, t h a t  sc ra tches  o f  t h i s  type and depth a re  
more dangerous than p i t s  ( f i g .  6)  t o  the  r e q u i r e d  maintenance o f  l am ina r  boundary 
l a y e r s  on these nozz le  wa l l s .  

(The 
= 10 x 105/ inch a t  these two l o c a t i o n s  o f  X 

We conclude from these 

Ftw j Mic ro-ph 

-Stylus 
tracks- 

7s 

F igu re  7 
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ALLOWABLE SURFACE ROUGHNESS

A review of profilometer roughness measurements on both the original and new Mach

3.5 two-dimensional contoured nozzle blocks is presented in figure 8. The maximum

peak-to-valley roughness defects, k, obtained from profilometer measurements on these

blocks before and after polish work are plotted against the axial distance from the

throat. Typical data at different distances from the sidewall are shown. These data

may be compared with the calculated variations of k obtained from numerical solutions

for the local laminar boundary-layer profiles using the computer code of reference 6

for the two values of R shown and for the two values of roughness "height" Reynolds

numbers of Rk = 42 and 1_. This type of roughness Reynolds number, defined as the

local Reynolds number evaluated at the distance from the surface of y = k, has been

used historically to characterize the effects of both isolated and distributed

roughness particles on transition. Early examples are given in reference 7 where

critical values of Rk for transition on flat plates and cone:_ varied from about 260 to

625 for the Mach number range from 1.6 to 3.7. The critical values of Rk on these

blocks are apparently much smaller, presumably due to the different type of roughness

and the different flow conditions such as pressure gradients and instability

mechanisms. Nevertheless, it may be concluded from detailed flow and roughness data

in references 1-4 and the results in figures 4-7 herein, that Rk = 10 is required to

maintain laminar boundary layers on the contoured walls in this type of nozzle. For

this application, k is defined as the maximum peak-to-valley profilometer measurement

of local surface defects. However, all scratches of the type shown in figure 7 must

be removed during the final polishing work.

Mach 3.5 2-D rapid-expansion pilot nozzle
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GORTLER VORTICES IN M=3.5 TWO-DIMENSIONAL NOZZLE

In order to apply transition results from the present nozzles to the design of
different nozzles at other flow conditions or to more general supersonic configura-
tions, it is essential to understand the transition mechanisms involved and to develop

theoretical models that can be used for predictive purposes. An early start to

understanding the mechanisms was reported in reference 8, but satisfactory models
depended on the successful application of linear stability theory by Dr. Malik to the
correct local flow conditions (refs. 4, 9 and i0). The principal results of this work
were to show that transition in these nozzles for Mach numbers from 3 to 5 was

generally caused by the G6rtler instability mechanism in the concave curvature regions
of the nozzles rather than Tollmien-Schlichting waves, provided that the nozzle walls

were maintained clean and polished, and boundary-layer removal slots at the nozzle
entrance were used. A brief review of some of that work will now be presented with

applications to the design of advanced nozzles that promise much longer quiet test
regions than achieved to date.

Figure 9 shows flow vectors calculated by the stability theory for Gortler

vortices (the mean flow direction is into the page) in the Mach 3.5 two-dimensional

pilot nozzle at R =5.1 x 105/in, where the experimental location of transition on

the wall was at Xw T = 3.6-inches from the throat. The laminar boundary-layer
thickness at this _oint was O.019-inch and maximum amplification was calculated when

the ratio of Gortler wavelength to boundary-layer thickness, x/a, was taken as 0.82 as

shown on the right side of the figure. These conditions gave N = 9.6 as the integral

of the local amplification rates from the wall inflection point to transition.

Roo = 5.1 x loS/in., Xw, T = 3.6in.

X = 0.060 in. _!

....... N=5.8 ........

i • • .... • _ t p • ..... • l
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\\ _ r ti.-_

7z"tl , ' r t T T t _ _ ' " ' I I I

),/8 = 3.3

36

Max Amplification

•-,- X = 0.015 in.-,.-

N=9.6

liz'" .,, +'x_ l

li_ " _t tll

),/8 : 0.82

1.58

Figure 9
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EFFECT OF GORTLER VORTEX WAVELENGTh' ON

AMPLIFICATION TO TRANSITION

Figure 10 shows that the N-factors for maximum amplification to transition of the

Gortler vortices in this nozzle varied from about 9 to 11 over the entire range of

test Reynolds numbers and measured transition locations, Xw, T. These transition
locations were observed only when the nozzle walls were clean and polished and with

the bleed valve open (ref. 4). The calculated maximum amplification always occurred

within the narrow wavelength range of .75 < _/_ < .95. Similar results were obtained

in two rapid-expansion axisymmetric nozzles for test section Mach numbers of 3 and 5

(ref. 10).
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MACH 3.5 AXISYMMETRIC-LONG NOZZLE

After it was established that G6rtler vortices were the dominant cause of

transition in these slotted nozzles, techniques for modifying the onset and

amplification of the vortices were developed (ref. 4, 9, and 10). The most practical

technique was to insert a section of radial flow in the expansion region of the

nozzle. This technique is used to minimize the concave wall curvature by moving the

inflection point far downstream which delays the onset of the G6rtler instability and

reduces the vortex growth rates because of smaller streamwise increases in boundary-

layer thicknesses.

Figure 11 illustrates the application of this technique to the aerodynamic design

of a new Mach 3.5 axisymmetric nozzle which is now being fabricated. The value of the

N-factor used to predict the location of transition (Xw T ) was taken as N = 9.2. At

the largest value of R /in = 15.5 x 105, the value of _ for amplification of

Tollmien-Schlichting (T_) waves was only 2.3. Therefore, if the surface finish

determined by the criteria of Rk = 10 can be obtained, and if the extremely small

tolerances on wall radius and waviness based on our test results of a Mach 3 rapid-

expansion axisymmetric nozzle (ref. 10) can be achieved, this new nozzle should

provide the large values of R ,AX shown.

THROATTO EXIT LENGTH= 29.91 in., EXIT DIA. = 6.86 in., THROATDIA. = 2.62 in.

"_ 5[_ 699o / -RadialFl°w sXw, T ----Machlines

 ,ow_
L_t_.__A_.__C_ ____;d,__t._ ±.____r2_pd

-5 0 5 10 15 20 25 30//35
X, distancefromthroat, in, Xc,TJ

Po Roo/in"

psia x10 -6

I00 1.03

150 1.55

j- Transition predicted for Gi_rtler N = 9.2, TO= 530°R

Xw, T Xc, T AX= Roo, AX TS N

inches inches Xc, T-Xo, in. xi0-6

23.57 34.89 17.09 17.6

21.21 32.40 14.60 22.6 2.3

Figure 11
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COMPARISON OF TRANSITION REYNOLDS NUMBERS WITH RAX

Experimental values of RAX for three nozzles are compared with flight data for

transition Reynolds numbers, RT, on cones in figure 12. The Mach 3 axisymmetric

rapid-expansion nozzle (ref. 10) was fabricated by electroforming nickel onto a

stainless steel mandrel. The final surface finish of the mandrel was examined with an

interference microscope. The space between each fringe was 10.75 micro-inches, or

half the wavelength of the green mercury light used. The maximum peak-to-valley

defects as determined from the fringe deviations on micro-interferograms at 6 random

locations on the mandrel was approximately 15 u-inches. The electroformed nickel

surface of the nozzle duplicated that of the mandrel and resulted in the highest

quality finish on any of the 6 nozzles tested to date. The measured values of

R ,,were also higher th_n for the other nozzles. At the highest test unit Reynolds

nu_er of R = 1.6 x 1Or/in, R.v = 10.1 x 10v for the Mach 3 nozzle. The calculated

value of the N-factor at the corresponding measured location of transition was N = 5.9

(ref. 10). The effects of different surface finishes, as shown in figure 8, on

R for both the original and new Mach 3.5 two-dimensional, rapid expansion (R.E)
AX

blocks are also shown in figure 12. Note that the new blocks with maximum k =

40 _-inches, resulted in the highest levels of RAX for R /iin < 6 x 105/inch.
However, for R /in > 9.3 x 105 the extent of lamlnar flo_ decreased rapidly due to

the influence o_ damage scratches such as those shown in figure 7. The predicted

values of R., for the new axisymmetric-long Mach 3.5 nozzle are in the range of

flight data _r RT. This indicates that most of the laminar boundary layer preceding

transition on slender test models would be exposed to the extremely low "laminar"

noise levels below .05 percent.
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ALLOWABLE SURFACE ROUGHNESS

As a guide for the surface finish specifications on the new Mach 3.5

axisymmetric-long nozzle, values of k have been computed for the same test conditions
used for the surface finish assessment of the Mach 3.5 two-dimensional nozzle (fig.

8). Again, values of Rk = 42 and 12 were used as shown in figure 13. For R = 12 and
at the highest unit Reynolds number this figure indicates that the maximum a_lowable

peak-to-valley roughnesses for this nozzle are increased somewhat to about 50

u-inches as compared to 40 u-inches on the two-dimensional nozzle. However, the

region where k < 150 u-inches is required, extends over a tota3 axial distance of

about 5.4-inches compared to a corresponding distance of only 1,.7-inches on the two-
dimensional nozzle.
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MACH 6 LOW-DISTURBANCE PILOT NOZZLE

A new Mach 6 long-axisymmetric nozzle has been designed using the same radial

flow techniques and N-factor criteria as for the new Mach 3.5 axisymmetric nozzle

(fig. 11). The engineering design for this nozzle, which will be tested in an existing

facility at NASA Langley, is now completed. The contour outline and predicted quiet

te_t core is shown in th_ upper part of figure 14. The high value of R , = 13.2 x
10v at R /in = 5.1 x 10 was predicted using N = 9 for transition due to'_e G6rtler

instability. At this transition point the value of N for the first mode TS

instability was 3.6. In spite of the higher local Mach numbers, the first TS mode was

still dominant over the second mode in this calculation. In the lower part of figure

14, the projected performance of the new Mach 6 nozzle, in terms of R,,, is compared
A^

with Mach 6 transition onset data on cones in atmospheric flight and in conventional

wind tunnels. The wind-tunnel data are f_om references 11 and 12 for 5° and 10° semi-

apex angle, sharp tip cones at M = 6. (The data from reference 12 were adjusted to

represent transition onset.) The®flight data are from figure 4 in reference 13 for

cones at Me = 6. The corresponding cross-hatched region in figure 14 is based partly

on interpolations along the correlation curves presented in reference 13. Also shown

in figure 14 below are experimental values of R ,,and corresponding values of N-

factors for a Mach 5 axisymmetric, rapid-expansi_ nozzle tested at NASA Langley
(refs. 8 and 10). Again, these comparisons indicate that ti_e new Mach 6 nozzle should

provide sufficiently high values of to simulate flight noise levels and
transition Reynolds numbers. RAX

/-Transition:
/G6rtler N = 9

Flow_._ ---Mach lines / TS N= 3.5, Tw= Taw.... --- M =6.0 1361n Rad.

-5 0 5 10 15 20 25 Z.n,/30 35 40
X, in. Quiet test core

= 13.2x 106`
LengthR o'AX
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2 - z_x pilotnozzle_ , /-Flight data

101- G°rtlerN=9_/_////////// }RT: ConesatMach6

8 -- ,__\\_, \\\\\\\\\\\\\\_,
RAX 6-
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RT G6rtlero ' _n

N = 11.7 "" 0 ORzxX data from
2 - 5.5 Mach 5 R.E. Nozzle

106 I III I I III I

2 4 6 8105 2 4 6 8106 2
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Figure 14
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ALLOWABLE SURFACE ROUGHNESS

The values for local roughness Reynolds numbers of Rk = 42 and 12 have again been

used to calculate allowable peak-to-valley roughnesses for the new Mach 6

axisymmetric-long pilot nozzle. The results are shown in figure 15 for two unit

Reynolds numbers corresponding to stagnation pressures of 150 and 300 psia at the

stagnation temperature of 820°R. Thus, for Rk = 12 and R®/in = 5.1 x 105 , values of

k < 30 u-inches are required in the throat region. This surface finish can be

achieved based on our experiences with the Mach 3 axisymmetric nozzle (fig. 12).

Mach 6 Axisymmetric-Long Pilot Nozzle

Exit dia, = 7,49 in.
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350

300 Rk =
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Figure 15
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CONCLUSIONS

i. Large width two-dimensional rapid expansion nozzles guarantee wide quiet test

cores that are well suited for testing models at large _:ngle of attack and for

swept wings. Hence, this type of nozzle will be operated first in the new

proposed large scale Supersonic Low-Disturbance Tunnel.

. Test results indicate that the surface finish of pilot nozzles is critical.

local roughness Reynolds number criteria of Rk = 10 will be used to specify

allowable roughness on new pilot nozzles and the new proposed tunnel.

The

3. Experimental data and calculations for M = 3.0, 3.5, and 5.0 nozzles give N-

factors from 6 to 10 for transition caused by G6rtler vortices.

. The use of N _ 9.0 for the GBrtler instability predicts quiet test cores in the

new M = 3.5 and M = 6.0 axisymmetric-long pilot nozzles that are 3 to 4 times

longer than observed in the test nozzles to date. The new nozzles utilize a

region of radial flow which moves the inflection point far downstream and delays

the onset and amplification of the G6rtler vortices.
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